LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2015

CH 2819 - ORGANIC REACTION MECHANISMS & HETEROCYCLICS

Date: 16/04/2015	Dept. No.	Max.: 100 Marks
Time: 01:00-04:00		

Part-A

Answer all questions. Each question carries two marks.

(10x2=20)

- 1. Which of the following compounds have aromatic character and write the basis of your answer? (a) $C_4H_4^{2+}$ (b) $C_7H_7^{+}$ (c) C_8H_8
- 2. Predict the mechanism of aliphatic diazotisation reaction with one example.
- 3. Explain S_N1 reaction with an example.
- 4. How is the formation of benzyne intermediate confirmed in aromatic nucleophilic substitution reaction?
- 5. What are the conditions that favour E1cB mechanism?
- 6. Write the role of inhibitors in free radical reaction.
- 7. Give evidences for the formation of arenium ion in aromatic electrophilic substitution reaction.
- 8. What is oxymercuration-demercuration reaction?
- 9. Compare the basicity of imidazole and pyridine.
- 10. Mention the biological importance of pyrimidines.

Part-B

Answer any eight questions. Each question carries five marks.

(8x5=40)

- 11. Discuss various factors affecting the aliphatic electrophilic substitution reaction mechanisms.
- 12. Give reason for the following

(3+2)

- Give reason for the following
 - a) Halogens are ring deactivators but *o-,p-*directors.
- b) Aniline is more reactive than acetanilide in electrophilic substitution.
- 13. a) Predict the mechanism of Stork enamine reaction.

(3+2)

- b) What is meant by *ipso* substitution reaction?
- 14. Explain the ion-pair mechanism of nucleophilic substitution reaction with suitable example.
- 15. Discuss the mechanism of von-Richter reaction. How does the nature of Z group affect the reaction rate?
- 16. Compare the reactivity of alkenes and alkynes towards electrophilic, nucleophilic and free radical addition reactions.
- 17. Account for the following:

 $(2^{1/2} \times 2)$

- a) In E2 reaction threo form gives trans alkene while erythro form gives cis olefin.
- b) Acid catalysed dehydration of *neo*pentyl alcohol yields 2-methyl-2-butene as the majorproduct.
- 18. Discuss the reactivity of aliphatic and aromatic substrates in free radical reaction.
- 19. How are carbenes synthesized? How do they undergo reaction with alkenes and conjugated dienes?
- 20. What are the conditions for a compound to undergo Michael 1,2- and 1,4-addition reactions? Give suitable examples.
- 21. How is the following compound synthesized?

22. Explain the following.

(2+3)

(6+4)

a) Chichibabin reaction b) Smiles rearrangement

Part-C

Answer any four questions. Each question carries ten marks.

(4x10=40)

- 23a. Derive the Hammett equation to correlate the substituent and reaction constant.
- b. Write the mechanism and limitations of Friedel- Crafts alkylation reaction.
- 24a. Explain the mechanism of prototropic rearrangement reaction with an example.
 - b. S_N1 reaction involves neighbouring group participation by H, CH_3 , C_6H_5 or aryl groups. How does the order of priority vary among the group? (5+5)
- 25a. Explain the mechanism of Rosenmund von Braun reaction. How do oxidative addition and reductive elimination take place in this reaction?
 - b. How is amination of 1-butene done? What are the products formed? (6+4)
- 26a. What is E1 reaction? Explain the stereo specificity of E1 elimination reaction.
 - b. Discuss the mechanism of free radical rearrangement reaction with evidences. (4+6)
- 27a. Discuss briefly (3+3)
 - (i) electrophilic substitution of pyrrole.
 - (ii) nucleophilic substitution of pyridine.
 - b. Explain in detail the synthesis of thiamine. (4)
- 28. Predict the products for the following.

a)
$$\begin{array}{c} OCH_3 \\ Br \\ \hline NaNH_2 \\ \hline NH_3 \end{array} ?$$

b)
$$O$$
 + OH^-

d) 3-Methyl-2-hexene $\xrightarrow{\text{Hydroboration}}$? $(4 \times 2^{1/2})$
